

Correction to Pd(II)-Catalyzed Dehydrogenative Olefination of Terminal Arylalkynes with Allylic Ethers: General and Selective Access to Branched 1,3-Enynes

Yin-Lin Shao, Xiao-Hong Zhang,* Jiang-Sheng Han, and Ping Zhong* Org. Lett. 2012, 14, 5242–5245. DOI: 10.1021/ol302400p

Supporting Information

A fter re-examination of the NMR data, we conclude that the products reported in the paper are branched enynes, not linear. We apologize for this error. See below for a full list of corrections and revised Supporting Information:

- 1. The title is corrected to read Pd(II)-Catalyzed Dehydrogenative Olefination of Terminal Arylalkynes with Allylic Ethers: General and Selective Access to Branched 1,3-Enynes.
- 2. The Table of Contents and Abstract graphics are corrected as follows:

3. The graphics in Tables 1-3 are corrected as follows:

Table 1. Reaction Condition Optimization

- 4. The name of compound 3 should be (3-(methoxymethyl)-but-3-en-1-yn-1-yl)benzene.
- 5. Pages 5243 and 5245. "Z-1,3-enynes" should be used in the Abstract and line 22 (left column) of p 5243 and "1,3-enyne" in line 10 (left column) of p 5245.

© 2014 American Chemical Society

Received: June 3, 2014 Published: June 17, 2014 Organic Letters

Addition/Correction

Table 2. Pd-Catalyzed Dehydrogenative Olefination of Terminal Alkynes with Allyl Methyl Ethers (Sulfide) a,b

V	X = 0		80 °C, N ₂ , 48 h	3-14
entry	R^1	ether	product	yield (%)
1	Н	~ ^0<	3	76
2	p-Me	<u></u>	ньс 4	72
3	m-Me	~ 0<	CH ₃ 5	65
4	p-Et	~ 0\	O-CH ₃	69
5	p-n-Bu	~ 0√	O CH ₃	65
6	p-OMe	~°~	н ₃ со о сн ₃	70
7	m-Cl	O_	CI 9	44
8	p-Cl	~ 0\	CI O CH3	45
9	p-F	~°\	F 0, CH ³	40
10	p-Br	~ 0√	вг О _{СНз}	47
11	p-NO ₂	~°	O ₂ N 13	33
12	Н	/\s_\	S'CH3	25
13	1-hexyne	^^	O.CH3	NR

 $[^]a$ Reaction conditions: arylacetylene (0.3 mmol), allyl methyl ether (3.0 mmol), Pd(OAc) $_2$ (5 mol %), DPPP (6 mol %), solvent (2 mL, v/v = 1:3), 80 °C, 48 h. b Isolated yields.

Table 3. Pd-Catalyzed Dehydrogenative Olefination of Terminal Alkynes with Allyl Phenyl Ethers a,b

		80 °C, N ₂ , 48 h		15-25	
entry	R^1	ether	product	yield (%)	
1	Н	OPh	OPh 15	85	
2	p-Me	OPh	н _з с ОРh	86	
3	m-Me	OPh	ОРН 17	83	
4	p-Et	OPh	OPh 18	74	
5	p-n-Bu	OPh	Oph 19	88	
6	p-OMe	OPh	н ₃ со ОРЬ 20	79	
7	m-Cl	OPh	OPh 21	70	
8	p-Cl	OPh	CI OPh 22	75	
9	p-F	OPh	P OPh	55	
10	p-Br	OPh	Br OPh 24	75	
11	p-NO ₂	OPh	0 ₂ N OPh 25	49	
12	1-hexyne	OPh	OPh	NR	
			(

 $[^]a$ Reaction conditions: arylacetylene (0.3 mmol), allyl phenyl ether (3.0 mmol), Pd(OAc) $_2$ (5 mol %), DPPP (6 mol %), solvent (2 mL, v/v = 1:3), 80 °C, 48 h. b Isolated yields.

ASSOCIATED CONTENT

S Supporting Information

Revised version containing the correct structures and names for the products reported. This material is available free of charge via the Internet at http://pubs.acs.org.